9 research outputs found

    Fast Multi-frame Stereo Scene Flow with Motion Segmentation

    Full text link
    We propose a new multi-frame method for efficiently computing scene flow (dense depth and optical flow) and camera ego-motion for a dynamic scene observed from a moving stereo camera rig. Our technique also segments out moving objects from the rigid scene. In our method, we first estimate the disparity map and the 6-DOF camera motion using stereo matching and visual odometry. We then identify regions inconsistent with the estimated camera motion and compute per-pixel optical flow only at these regions. This flow proposal is fused with the camera motion-based flow proposal using fusion moves to obtain the final optical flow and motion segmentation. This unified framework benefits all four tasks - stereo, optical flow, visual odometry and motion segmentation leading to overall higher accuracy and efficiency. Our method is currently ranked third on the KITTI 2015 scene flow benchmark. Furthermore, our CPU implementation runs in 2-3 seconds per frame which is 1-3 orders of magnitude faster than the top six methods. We also report a thorough evaluation on challenging Sintel sequences with fast camera and object motion, where our method consistently outperforms OSF [Menze and Geiger, 2015], which is currently ranked second on the KITTI benchmark.Comment: 15 pages. To appear at IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017). Our results were submitted to KITTI 2015 Stereo Scene Flow Benchmark in November 201

    Semi-Global Stereo Matching with Surface Orientation Priors

    Full text link
    Semi-Global Matching (SGM) is a widely-used efficient stereo matching technique. It works well for textured scenes, but fails on untextured slanted surfaces due to its fronto-parallel smoothness assumption. To remedy this problem, we propose a simple extension, termed SGM-P, to utilize precomputed surface orientation priors. Such priors favor different surface slants in different 2D image regions or 3D scene regions and can be derived in various ways. In this paper we evaluate plane orientation priors derived from stereo matching at a coarser resolution and show that such priors can yield significant performance gains for difficult weakly-textured scenes. We also explore surface normal priors derived from Manhattan-world assumptions, and we analyze the potential performance gains using oracle priors derived from ground-truth data. SGM-P only adds a minor computational overhead to SGM and is an attractive alternative to more complex methods employing higher-order smoothness terms.Comment: extended draft of 3DV 2017 (spotlight) pape

    画像領域分割と対応点推定問題への離散最適化アプローチ

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 相澤 清晴, 東京大学教授 佐藤 洋一, 国立情報学研究所教授 佐藤 真一, 東京大学教授 苗村 健, 東京大学准教授 山崎 俊彦, 早稲田大学教授 石川 博University of Tokyo(東京大学

    Neural Structure Fields with Application to Crystal Structure Autoencoders

    Full text link
    Representing crystal structures of materials to facilitate determining them via neural networks is crucial for enabling machine-learning applications involving crystal structure estimation. Among these applications, the inverse design of materials can contribute to next-generation methods that explore materials with desired properties without relying on luck or serendipity. We propose neural structure fields (NeSF) as an accurate and practical approach for representing crystal structures using neural networks. Inspired by the concepts of vector fields in physics and implicit neural representations in computer vision, the proposed NeSF considers a crystal structure as a continuous field rather than as a discrete set of atoms. Unlike existing grid-based discretized spatial representations, the NeSF overcomes the tradeoff between spatial resolution and computational complexity and can represent any crystal structure. To evaluate the NeSF, we propose an autoencoder of crystal structures that can recover various crystal structures, such as those of perovskite structure materials and cuprate superconductors. Extensive quantitative results demonstrate the superior performance of the NeSF compared with the existing grid-based approach.Comment: 16 pages , 6 figures. 13 pages Supplementary Informatio

    Continuous 3D Label Stereo Matching Using Local Expansion Moves

    No full text
    corecore